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Abstract

We introduce new secure privacy-preserving protocols
for outsourcing continuous authentication of smartphone
users. Our protocols allow a smartphone to privately
perform continuous and unobtrusive authentication using
touch behaviors. Through our protocols, the smartphone
does not need to disclose touch information to the authen-
tication server. Further, neither the server nor the smart-
phone have access to the content of the user’s template.

We present formal proofs to substantiate security claims
on our protocols. We then perform experiments on publicly
available touch data, collected from forty-one users. Our
experiments on a commodity Android smartphone show that
our protocols incur an overhead between 263ms and 2.1s.

1. Introduction
Continuously authenticating users of commodity smart-

phones has become a significant priority because: (1) there
has been a tremendous surge in the amount of personal
data and sensitive information stored or accessed on today’s
smartphones, and (2) due to their small size and high mo-
bility, smartphones are constantly exposed to unauthorized
access via theft, loss, and coercion. Login-time pins, and
textual and graphical passwords are by far the most popular
mechanisms for authenticating smartphone users. However,
these mechanisms suffer from at least two drawbacks:1 (1)
they are static, i.e., they authenticate the user once – at the
beginning of a session – and do not offer any protection
against unauthorized access post login; and (2) passwords
and pins require user’s attention for their entry and there-
fore are not suitable for continuous authentication.

Implicit or “active” authentication is an emerging area in
smartphone domain, which aims to continuously authenti-
cate users without interrupting them. Authentication is per-

1There is also growing evidence that users tend to choose simple text
and graphical passwords, making them relatively easy to guess [4].

formed by harnessing the users’ natural interactions with
the smartphone. Lately, behavioral modalities that have
been used for active authentication include on-screen touch
and gestures [13, 23], hand or smartphone movement and
orientation [12], geolocation patterns and combinations of
these [30].

Among the aforementioned modalities for active authen-
tication of smartphone users, touch has been gaining popu-
larity because: (1) there is growing evidence [12, 13, 23]
that touch patterns can be used to create reliable signa-
tures for user authentication, and (2) most interactions with
smartphone applications happen as taps, touch strokes and
gestures, so these patterns are easily available for enroll-
ment and subsequent authentication.

As new and reliable active authentication modalities be-
come available, more businesses have started to integrate
these behavior-based technologies into their multi-factor
online-user authentication solutions [2]. Because deploy-
ing, maintaining, and updating these technologies requires
specialized expertise and infrastructure, they are often out-
sourced to companies that provide Authentication as a Ser-
vice and Identity Assurance as a Service (e.g., Admit One
Security [1] and BehavioSec [3]). These companies focus
on building the software, maintaining the infrastructure, and
updating user templates for their customers.

Although outsourcing continuous authentication may
improve security, it also raises privacy concerns because be-
havioral information is disclosed to a third party. In the case
of outsourced touch-based authentication, this could lead an
authentication server to learn what keys have been pressed
on a virtual keyboard using tap locations, or to infer what
type of application (e.g., a map or a browser) the user is cur-
rently interacting with via gesture information. To the best
of our knowledge, no prior work has addressed the problem
of securely outsourcing touch-based continuous authentica-
tion. In this paper, we address this problem.
Our Contributions. We design, implement and evaluate
a framework for securely and privately outsourcing con-
tinuous authentication based on touch data to a (possibly
untrusted) server. Our framework consists of two efficient



“custom” privacy-preserving protocols which allow a server
to privately authenticate a smartphone user via scaled Eu-
clidean and scaled Manhattan verifiers. After executing our
protocols, the server learns the distance between the tem-
plate and the user’s sample, and no additional information.
Furthermore, our protocols do not disclose the content of
the user’s template to either the server or the smartphone.

We provide formal proofs of security in the semi-honest
model. Next, via experiments on a prototype implementa-
tion running on an Android smartphone, we show that our
protocols are practical and that their overhead is small.

Of independent interest, to the best of our knowledge this
work is the first to introduce efficient privacy-preserving
computation of exact Manhattan distance.

Organization. We review related literature in Section 2. In
Section 3, we present the dataset, verification experiments,
and results. We introduce our protocols in Section 4 and
evaluate them in Section 5. We conclude in Section 6.

2. Related Work

Continuous Authentication with Touch Patterns. Be-
cause touch-based continuous authentication of smartphone
users is an emerging field, there are a limited number of
studies on this topic. Below, we review recent work.

Li et al. [23] selected 8 gesture and tap features out
of 52 gesture and 3 tap features to continuously authenti-
cate users. A total of 75 users participated in their experi-
ments. Out of them, 25 were target and 47 were non-target
users. During verification, a support vector machine train-
ing model was created for each target user using positive
examples (that belong to the same target user) and negative
examples (that belong to the remaining target and non-target
users). Four-hundred positive and negative examples were
used for training each model and another 400 for testing.
The authors ensured that users used for generating negative
training examples were not used in testing. The authors re-
ported close to 4% false accept and 4% impostor pass rates
with sliding gestures.

Frank et al. [13] used 28 touch based behavioral features,
with a total of 41 users participated in the experiments.
The authors used support vector machine and kNN train-
ing models for each user, using positive and negative ex-
amples. They reported between 0 and 4 percent equal error
rates under inter-week (enrollment and testing sessions sep-
arated by a week), inter-session (enrollment and testing data
belong to different sessions), and intra-session (enrollment
and and testing belong to the same session) scenarios. No
training data was used during testing. The authors achieved
between 11 and 43 seconds verification delay, depending on
the scenario.

Feng et al. [12] used 53 touch and gesture features. In ad-
dition, they used a digital glove to capture 36 triaxial angu-

lar rate features when users performed touch activity. A to-
tal of 40 subjects participated in the study, out of which dig-
ital glove data was collected for 11 subjects. For each user, a
training model was developed using random forest, J48 de-
cision tree, and the Bayes network classifier. From [12], it
is unclear how many positive/negative examples were used
or what percentage of the data were allocated for training
and testing. With Bayesian classifier, the authors reported
2.15% FAR and 1.63% FRR when the data from the digi-
tal glove was used with touch data and 11.96% FAR of and
8.53% FRR without the digital glove data.

Privacy-Preserving Protocols. Starting from the seminal
work on garbled circuit evaluation [32, 15], it has been
shown that any function can be securely evaluated by rep-
resenting it as a boolean circuit. Similar results exist for
secure evaluation of any function using secret sharing tech-
niques, e.g., [28], or homomorphic encryption, e.g., [7].

In recent years, a number of tools have been developed
for automatically creating a secure protocol from its func-
tion description written in a high-level language. Examples
include Fairplay [25], VIFF [10] and TASTY [16]. How-
ever, “custom” optimized protocols for specific applications
are often more efficient than such general techniques.

A number of recent publications address the problem
of privacy-preserving biometric authentication and identi-
fication. Secure face recognition was first treated by Erkin
et al. [11]. In this paper the authors designed a privacy-
preserving face recognition protocol based on Eigenfaces.
Sadeghi et al. [29] subsequently improved the performance
of the protocol. More recently, Osadchy et al. [26] de-
signed a new face recognition algorithm together with its
privacy-preserving realization called SCiFI. The design tar-
geted to simultaneously address robustness and efficiency
when used for secure computation.

Recent work of Blanton et al. [6] focused on privacy-
preserving iris and fingerprint matching. The authors rely
on a hybrid approach based on garbled circuits and ho-
momorphic encryption for optimal performance. Barni et
al. [5] presented a privacy-preserving protocol for finger-
print identification using FingerCodes [17], which is not as
discriminative as techniques based on location of minutiae
points, but is particularly suited for efficient realization in
the privacy-preserving framework.

Techniques based on fuzzy commitments (e.g., [18, 31,
19]) are commonly used to provide template protection and
to implement access control on encrypted documents. How-
ever, such techniques require biometric comparisons to be
performed in a feature space different from that of the orig-
inal biometrics, possibly increasing ERR [22]. In contrast,
our protocols do not affect EER of the underlying biomet-
ric modality, since the comparison between the user sample
and the template is functionally identical to the same com-
parison in the unencrypted domain.



3. Continuous Authentication with Touch Data
We used a publicly available touch dataset,2 which was

originally introduced in [13]. Here, we briefly discuss the
dataset for completeness. (A detailed description can be
found in [13].) The dataset contains 30 behavioral touch
features from 41 participants, who were asked to perform
two tasks: reading text and comparing pictures, on Android
based commodity smartphones. A recording tool captured
touch data when the participants were performing the tasks.
The dataset was collected in two phases: in the first phase,
the participants were asked to read different documents on
their smartphones. In the second phase, the participants
were presented with two similar images and were asked to
spot the differences. We used the dataset that was avail-
able in ARFF format. The dataset contains a total of 21,158
feature vectors. Each vector has 34 features that include 30
touch features, device ID, user ID, document ID, and device
orientation. On an average, each user has 516.04 (227.18
standard deviation) feature vectors.

We split the feature vectors belonging to each user into
two sets: (1) training, and (2) testing. During training, we
used first 90 percent of a user’s vectors to build the tem-
plate. We used the remaining to generate genuine test at-
tempts. For each user, we used the feature vectors belong-
ing to the remaining 40 users to generate zero-effort impos-
tor attempts. In our experiments, we performed biometric
verification by matching a user’s template (created from the
user’s own samples) with test attempts. We did not use im-
postor samples to create a user’s training model (as done in
recent touch-based authentication studies [13, 23]).

3.1. Feature Selection

Traditionally, feature selection has been used to define
a subset of most informative features to improve the per-
formance of a prediction task. However, in the dataset we
used, some features had abnormally high variance (plausi-
bly because the features were extracted during different task
contexts such as reading different documents and switching
between pictures). We used feature selection to identify sta-
ble features, i.e., the features with least amount of deviation
from their median values. We used unsupervised feature se-
lection and ranked each feature using median absolute de-
viation from median (MAD), given by:

MAD(F) = Median{|x1 − x̂|, |x2 − x̂|, · · · , |xm − x̂|} ,

where xi represents an instance of a feature F, m represents
the number of instances of F, and x̂ represents the median of
F. We performed feature selection on the training data. Our
feature selection process ranks individual features based on
the increasing order of their MAD values (i.e., lower ranks

2http://www.mariofrank.net/touchalytics/index.html

correspond to lower MAD values). The lower the MAD val-
ues, the higher the stability of that feature. In the same fash-
ion, for comparison purposes, we also used the supervised
feature ranking method based on normalized mutual infor-
mation that was given in [13].

Remark. There are two types of feature selection meth-
ods: (1) supervised, which use class information, and (2)
unsupervised, which do not use class information. Though
supervised methods are known to perform better than un-
supervised (see [24]), using them in a verification setting
requires running the feature selection procedure each time a
user is added into or deleted from the database. This clearly
affects scalability. For this reason, we opted for unsuper-
vised feature selection.

3.2. Data Cleaning and Preprocessing

Like any behavioral data, touch data is not exempt from
extreme values (outliers). Outliers may arise due to several
factors including noisy sensors, users’ movement and phys-
ical activity, users’ state of mind (e.g., cognitive stress), and
users’ adaptation to situational impairments (e.g., user car-
rying a smartphone with one hand and a heavy object with
the other). Outliers can potentially distort users’ templates,
especially if the templates maintain summary statistics sen-
sitive to outliers (e.g., mean). For each feature of a user,
we use values between 3 and 97 percentiles for creating
the template and ignore the rest. We chose the percentile
thresholds to achieve a balance between eliminating out-
liers and at the same time retaining enough values to create
a template representative of the user’s touch behavior. Ad-
ditionally, we performed Zero Component Analysis (ZCA)
whitening on training and testing data of each user to decor-
relate features.

3.3. Discretization

Because our privacy-preserving protocols are designed
to work on positive integer values, we mapped each real-
valued feature to [0, 2e−1] with equal-width bins. We used
the following formula for discretization:

discretizee,F(xi) =

⌊
(2e − 1) · |xi −minF|
|minF −maxF|

⌋
,

where F is the feature being discretized, xi is an instance in
F, minF is the minimum value of F, and maxF is the max-
imum value of F. The e parameter controls the number of
cells a feature is discretized into. Therefore, higher the e
parameter value, the lower the potential loss of information
due to discretization. We experimented with e values 8, 10,
and 16. We opted for an unsupervised discretization method
for the same reason that we opted for unsupervised feature
selection in Section 3.1.



3.4. Verification Experiments and Results

Verifiers. We used two verifiers: (1) scaled Euclidean and
(2) scaled Manhattan, because these verifiers have been pre-
viously shown to perform well for behavioral authentication
(see [21]). Below, we briefly describe the verifiers.

Let Y = {ȳ1, . . . , ȳn} be the mean vector computed
from the feature vectors in the training set of a user. Let
X = {x1, . . . , xn} be a test vector. The scaled Euclidean
verifier is defined as:

DE(X,Y ) =
1

n

√√√√ n∑
i=1

(xi − ȳi)2
σi

, and

the scaled Manhattan verifier is defined as:

DM (X,Y ) =
1

n

n∑
i=1

|xi − ȳi|
σi

,

where n is the number of features, ȳi is the mean of the i-
th feature in the template, xi is the corresponding feature
value in the test vector, and σi is the standard deviation of
the i-th feature.

Results. Figures 1 and 2 depict the percentage equal error
rates (%EERs) of scaled Euclidean and Manhattan verifiers.
Solid plots show EERs of original (real-valued) features and
dotted plots show the %EERs of corresponding discretized
features when e is set to 8, 10, and 16. The x-axes in figures
1 and 2 show the highest rank of the feature subset selected
with normalized mutual information (figures 1a and 1b) or
MAD (figures 2a and 2b) criteria. That is, 1 on the x-axis
represents the subset containing the 1st ranked feature (the
feature with highest normalized mutual information or low-
est MAD value), 2 represents the subset containing 1st and
2nd ranked features (features with the highest and the sec-
ond highest normalized mutual information or lowest and
the second lowest MAD), and so on.

Performance of Verifiers. With normalized mutual infor-
mation based feature subset selection performed on original
features (that were not discretized), the scaled Manhattan
verifier yielded lowest EER of 22.50% (with rank 6 sub-
set) and the highest EER of 38.28%(with rank 1 subset). In
comparison, the scaled Euclidean verifier yielded between
21.27% (with rank 6 subset) and 38.28% (with rank 1 sub-
set) EERs. With MAD feature selection performed on orig-
inal features (which were not discretized), the scaled Man-
hattan verifier yielded between 27.04% (with rank 26 sub-
set) and 45.77% (with rank 1 subset) EERs. In comparison,
the scaled Euclidean verifier yielded between 26.17% (with
rank 4 subset) and 45.77% (with rank 1 subset) EERs. Irre-
spective of the feature subset selection method we used, the
scaled Euclidean performed slightly better than the scaled
Manhattan for most of the m-ranked feature subsets.

Impact of Discretization. From figures 1 and 2, we ob-
serve that discretized features have higher %EERs com-
pared to the original real-valued features between 4 and 12
feature subset sizes. Outside this size range, the discretized
features have comparable %EERs to that of the original fea-
tures. Figure 2 shows that the MAD feature subsets outside
of sizes 4 through 9 have their %EERs of scaled versions
relatively close to their original unscaled counterparts, with
deviations less than 1% in most cases. A similar trend can
be observed for normalized feature subsets (see figures 1),
where the %EERs of feature subsets sizes beyond 10 have
higher values compared to their unscaled counterparts, with
deviations between 1% and 2%. Also, it is interesting to
note that there are larger deviations of %EERs for 4, 5 and 6
feature subsets for both mutual information and MAD based
features and the scaled feature subsets of MAD better ap-
proximate their unscaled counterparts.

4. Privacy-Preserving Protocols
In this section we review the security model and the cryp-

tographic tools used in our constructions. We then introduce
our protocols.

4.1. Cryptographic Preliminaries

Security model. We use the term adversary to refer to in-
siders, i.e., protocol participants. Outside adversaries are
not considered, since their actions can be mitigated via stan-
dard network security techniques.

Our protocols are secure in the presence of semi-honest
(also known as honest-but-curious or passive) participants.
In this model, while participants follow prescribed protocol
behavior, they might try to learn additional information be-
yond that obtained during normal protocol execution. For-
mally [14]:

Definition 1 Let P1 and P2 participate in protocol π that
computes function f(in1, in2) = (out1, out2), where ini
and outi denote Pi’s input and output, respectively. Let
VIEWπ(Pi) denote the view of participant Pi during the
execution of protocol π. More precisely, Pi’s view is formed
by its input, internal random coin tosses ri, and messages
m1, . . .,mt passed between the parties during protocol ex-
ecution: VIEWπ(Pi) = (ini, ri,m1, . . .,mt).

We say that protocol π is secure against semi-
honest adversaries if for each party Pi there exists
a probabilistic polynomial time simulator Si such that
{Si(ini, fi(in1, in2))} ≡ {VIEWπ(Pi), outi}

Homomorphic Encryption. Our constructions use a
semantically secure additively homomorphic encryption
scheme. In an additively homomorphic encryption scheme,
Enc(m1) · Enc(m2) = Enc(m1 + m2) which also im-
plies that Enc(m)a = Enc(a · m). While any encryption
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Figure 1: %EERs of scaled Manhattan (a) and scaled Euclidean (b) verifiers for m-ranked feature subsets obtained with
normalized mutual information criterion. The solid plot shows %EERs with real-valued features and dotted plots show
%EERs with discretized features with e values 8, 10, and 16.
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Figure 2: %EERs of scaled Manhattan (a) and scaled Euclidean (b) verifiers form-ranked feature subsets obtained with MAD
criterion. The solid plot shows %EERs with real-valued features and dotted plots show %EERs with discretized features with
e values 8, 10, and 16.

scheme with the above properties (such as the well known
Paillier encryption scheme [27]) suffices for the purposes
of this work, the construction due to Damgård et al. [9, 8]
(DGK) is of particular interest here because it is fast and
it produces small ciphertexts. In DGK a public key con-
sists of (1) a (small, possibly prime) integer u that de-
fines the plaintext space; (2) k-bit RSA modulus N = pq
such that p and q are k/2-bit primes, vp and vq are t-bit
primes, and uvp|(p− 1) and uvq|(q − 1); and (3) elements
g, h ∈ Z∗N such that g has order uvpvq and h has order
vpvq . Given a messagem ∈ Zu, encryption is performed as
Enc(m) = gmhr mod N , where r ← {0, 1}2.5t. We refer
the reader to [9, 8] for any additional information.

In the rest of the paper, we use HEs(m) to refer to the
DGK encryption of message m under the server’s public
key. (The server is assumed to have access to the corre-
sponding decryption key.)

Homomorphic Comparison. Our privacy-preserving pro-
tocol for computing scaled Manhattan distance requires
privacy-preserving comparison of two encrypted values.
For this task, we rely on the comparison protocol of Erkin
et al. [11]. This protocol is based on the observation that

x < y is true iff the l-th bit of a = 2l + x − y is
1. Given Enc(x), encryption of a is computed by the
client as Enc(a) = Enc(2l) · Enc(x) · Enc(y)−1. Encryp-
tion of the l-th bit of a is then computed as Enc(al) =
Enc(2−l ·(a−(a mod 2l)). Value a is available to the client
only in encrypted form, and computing a mod 2l in the en-
crypted domain requires interaction between the client and
the server: the client “masks” Enc(a) by selecting a ran-
dom value r and computing Enc(a′) = Enc(a) · Enc(r).
Then, the client sends Enc(a′) to the server, who decrypts
it and returns the encryption of c = a′ mod 2l to the
client. Next, the client “unmasks” Enc(c) by computing
Enc(c) · Enc(r)−1 = Enc(a mod 2l). We refer the reader
to [11] for any additional information.

Symmetric Encryption. Our protocols use a semantically
secure symmetric encryption scheme. For this purpose, we
rely on AES in counter (CTR) mode. This mode is known
to be semantically secure under the assumption that AES is
a pseudorandom permutation [20]. We use SEc(m) to in-
dicate symmetric encryption performed under a key known
by the client.



4.2. Protocols Description

Enrollment Phase. During enrollment, user biometrics are
collected, encrypted and stored on the authentication server.
The server does not have access to an unencrypted copy of
the biometrics.

The client generates a template Y = {y1, . . . , yn} and
the corresponding values σ1, . . . , σn. Let αi = 1/σi. Then,
for scaled Manhattan, JY K is computed as:

JY K = SEc(HEs(α1y1), . . . ,HEs(αnyn))

while for scaled Euclidean we have:

JY K = SEc(HEs(α1y
2
1),HEs(αi2yn), . . . ,

HEs(α1y
2
n),HEs(αn2yn))

Verification Phase. We designed privacy-preserving pro-
tocols for computing scaled Manhattan distance (Figure 3),
and scaled Euclidean distance (Figure 4). In both protocols,
client’s input is a vector X (which represents a biometric
sample from the user), server’s public key and the symmet-
ric key used to protect the template. Server’s input is the
decryption key for HEs(·) and JY K, which corresponds to
the encrypted template Y collected during enrollment. (We
denote the party that does not receive any output from the
protocol as the client, and the party that learns the outcome
of the protocol as the server.)

4.3. Security Analysis

Security of our protocols relies on the security of the un-
derlying building blocks. In particular, we need to assume
that HEs(·) is a semantically secure homomorphic encryp-
tion scheme, and that SEc(·) is a semantically secure sym-
metric encryption scheme.

We instantiated HEs(·) using the DGK encryption
scheme, which has been shown to be semantically secure
under a hardness assumption that uses subgroups of an RSA
modulus [9, 8]. We used AES-CTR for SEc(·), which is a
construction secure under the assumption that AES is pseu-
dorandom permutation [20].

The privacy-preserving comparison protocol of Erkin et
al. was shown to be secure in [11], and therefore we do not
include it in our analysis.

To show the security of the protocols, we sketch how to
simulate the view of each party using its inputs and out-
puts alone. If such simulation is indistinguishable from the
real execution of the protocol, for semi-honest parties this
implies that the protocols do not reveal any unintended in-
formation to the participants (i.e., they learn only the output
and what can be deduced from their respective inputs and
outputs).
Privacy-Preserving Scaled Manhattan Distance. Since
SEc(·) is semantically secure, the server cannot extract any
information from JY K.

The server’s view of the protocols consists of the decryp-
tion key for HEs(·), encrypted vector JY K, and ciphertext
HEs(d) from the client. (The server’s view also contains the
message exchanged during the comparison and multiplica-
tion protocols. We ignore these messages since the two pro-
tocols have been proven secure in [11].) The server’s out-
put is d/n. Simulator Ss provides the server with JY K and
with the decryption key for HEs(·) as input. It then uses the
protocol output d/n to build HEs(d), which is sent to the
server. Since HEs(d) is properly distributed, the server can-
not distinguish between the simulation and a real execution
of the protocol. Therefore, the protocol is secure against a
curious server.

The client’s view of the protocol consists in the
server’s public key, the symmetric key for SEc(·), X and
JY K. The client has no output. Simulator Sc selects
a random set of values y′1, . . . , y

′
n, constructs JY ′K =

SEc(HEs(α1y
′
1), . . . ,HEs(αny

′
n)) and sends it to the client.

The semantic security of HEs(·) prevents the client from
determining that JY ′K corresponds to the encryption of ran-
dom values. Therefore, JY ′K is properly distributed. For
this reason, the client cannot distinguish between interac-
tion with the Sc and with a honest server. Hence the proto-
col is secure against a curious client.
Privacy-Preserving Scaled Euclidean Distance. The se-
mantic security of SEc(·) prevents the server from extract-
ing any information from JY K.

The server’s view of the protocols consists of the decryp-
tion key for HEs(·), encrypted vector JY K, and ciphertext
HEs(d) from the client. The server’s output is (

√
d)/n.

Simulator Ss provides the server with JY K and the decryp-
tion key for HEs(·) as input. It then uses (

√
d)/n to con-

struct HEs(d), and sends it to the server. Since HEs(d) is
properly distributed, the server cannot distinguish between
the simulation and a real execution of the protocol. There-
fore, the protocol is secure against a curious server.

The client’s view of the protocol consists in the
server’s public key, the symmetric key for SEc(·), X
and JY K. The client has no output. Simulator
Sc selects a random set of values y′1, . . . , y

′
n, con-

structs JY ′K = SEc(HEs(α1(y′1)2),HEs(2α1y
′
1), . . . ,

HEs(αn(y′n)2),HEs(2αny
′
n)) and sends JY ′K to the client.

The semantic security of HEs(·) prevents the client from
determining that JY ′K corresponds to the encryption of ran-
dom values. Therefore, JY ′K is properly distributed. For
this reason, the client cannot distinguish between interac-
tion with the Sc and with a honest server. Hence the proto-
col is secure against a curious client.

5. Performance Analysis
The computational complexity of our scaled Manhattan

protocol is O(n) where n = |X|, i.e., linear in the number
of features for both client and server. The complexity of our



Input: Client: sample X = (x1, . . . , xn), server’s public key and decryption key for SEc(·); Server: encrypted template
JY K = SEc(HEs(α1y1), . . . ,HEs(αnyn)) (where αi = 1/σi) and decryption key for HEs(·).
Output: The server learns DM (X,Y ).
Protocol steps:

1. The server sends JY K to the client, which decrypts it, obtaining HEs(α1y1), . . . ,HEs(αnyn).
2. For i = 1, . . . , n, the client and the server interact in a privacy-preserving comparison protocol. At the end of the

protocol the client learns the encryption of bit bi = (αixi < αiyi)
3. For i = 1, . . . , n, the client computes: HEs(di) = HEs(|αixi − αiyi|) = HEs(MAX(αixi, αiyi) −
MIN(αixi, αiyi)) = HEs((bi · (αiyi − αixi) + αixi)− (bi · (αixi − αiyi) + αiyi)) as:

HEs(di) = HEs(bi · αiyi)
2 · HEs(bi · αixi)

−2 · HEs(αixi) · HEs(αiyi)
−1

The computation of HEs(di) requires client and server to perform a short interactive protocol for computing HEs(bi ·
αixi) and HEs(bi · αixi) [11].

4. Then, the client computes:

HEs(d) = HEs

(
n∑

i=1

di

)
=

n∏
i=1

HEs(di)

5. The client sends HEs(d) to the server, which decrypts it and outputs DM (X,Y ) as d/n.

Figure 3: Computation of Privacy-Preserving Scaled Manhattan Distance

Input: Client: sample X = (x1, . . . , xn), decryption key for SEc(·) and server’s public key; Server: encrypted template
JY K = SEc(HEs(α1y

2
1),HEs(α12y1), . . . ,HEs(αny

2
n),HEs(αn2yn)) (where αi = 1/σi) and decryption key for HEs(·).

Output: The server learns DE(X,Y ).
Protocol steps:

1. The server sends JY K to the client, which decrypts it as HEs(α1y
2
1),HEs(α12y1), . . . ,HEs(αny

2
n),HEs(αn2yn).

2. For i = 1, . . . , n, the client computes:

HEs(di) = HEs

(
αi · (xi − yi)2

)
= HEs

(
αi · (x2i + y2i − 2xiyi)

)
= HEs

(
αix

2
i

)
· HEs

(
αiy

2
i

)
· HEs (αi2yi)

−xi

3. Then, the client computes

HEs(d) = HEs

(
n∑

i=1

di

)
=

n∏
i=1

HEs(di)

4. The client sends HEs(d) to the authentication server, which computes d and outputs DE(X,Y ) as (
√
d)/n.

Figure 4: Computation of Privacy-Preserving Scaled Euclidean Distance

scaled euclidean protocol is also O(n) for the client, and
O(1) for the server, i.e., constant in the number of features.
In fact, the server only needs to decrypt one ciphertext re-
gardless of the number of features involved in the protocol.

In terms of communication, both protocols require the
server to send JY K to the client. Additionally, the protocol
that computes scaled Manhattan distance also requires the
parties to run n instances of the comparison and multiplica-
tion protocols, both of which exchange constant number of
messages. As an optimization, if the client caches a copy of
JY K, then the communication cost of computing the scaled
Euclidean distance is reduced to O(1).

We performed experiments on a Linux server with two
Intel Xeon E5420 CPUs at 2.5 GHz. The server software is
written in C and relies on the GNU GMP library. For the
client we used a Samsung Galaxy Nexus smartphone, with
dual core ARM Cortex A9 CPU running at 1.2 GHz and

Android 4.2. The client software is written in Java and uses
the BigInteger library.

From verification results in Section 3.4, we determined
that between 4 and 20 touch features yield lowest %EERs.
In Table 1, we summarize the performance results of our
protocol implementation in this range. Results in Table 1
are obtained using e = 10 (i.e., each feature is represented
using 10 bits) which offers the best tradeoff between %EER
and protocol overhead (i.e., time to compute the distance
between the template and the user sample).

Although all devices used for the experiments have mul-
tiple CPU cores, for the sake of generality all experiments
have been run on a single core. Both protocols can take ad-
vantage of multiple cores by performing multiple instances
of Step 3 of the scaled Manhattan protocol and Step 2 of the
scaled Euclidean protocol concurrently on the client. On
the server, multiple cores can be used to run concurrent



Table 1: Performance of our prototype implementation.

Scaled Manhattan Scaled Euclidean

# of Feat. Server Client Server Client
4 23 ms 520 ms ≈ 1 ms 263 ms
8 47 ms 833 ms ≈ 1 ms 520 ms

12 70 ms 1245 ms ≈ 1 ms 781 ms
16 95 ms 1676 ms ≈ 1 ms 1039 ms
20 120 ms 2102 ms ≈ 1 ms 1302 ms

instances of the comparison protocol for scaled Manhat-
tan, although this may not reduce overall protocol execution
time when the server is interacting with a smartphone.

6. Conclusions
In this paper, we introduced the first efficient privacy-

preserving protocols for securely outsourcing continuous
authentication with touch data. Our protocols allow a smart-
phone and an authentication server to privately compute ex-
act scaled Euclidean and scaled Manhattan distances be-
tween their respective inputs. Furthermore, our protocols
do not disclose any additional information about the parties’
input. The security of our protocol is based on standard as-
sumptions and supported by formal security proofs in the
semi-honest model, presented in the paper.

We performed experiments to demonstrate the accuracy
and practicality of our protocols. Our experiments confirm
that the EER of the protocols is low. Furthermore, the over-
head introduced by the privacy-preserving computation of
Euclidean and Manhattan distance is between 263ms and
2.1s, depending on the specific parameters, using a com-
modity Android smartphone.
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